8.1 Sequences and Series

Homework: None

Warm-Up: Find the Sum (88, 90, 96)

88.
$$\sum_{i=1}^{6} (3i-1) = 5$$

90.
$$\sum_{k=1}^{5} 4 - 2$$

92.
$$\sum_{i=0}^{5} 3i^2$$

94.
$$\sum_{j=3}^{5} \frac{1}{j}$$

96.
$$\sum_{k=2}^{5} (k+1)(k-3) = 1$$

98.
$$\sum_{j=0}^{4} (-2)^{j}$$

SERIES

Definition of a Series

Consider the infinite sequence $a_1, a_2, a_3, \ldots, a_i, \ldots$

 The sum of the first n terms of the sequence is called a finite series or the partial sum of the sequence and is denoted by

$$a_1 + a_2 + a_3 + \cdots + a_n = \sum_{i=1}^n a_i$$

The sum of all the terms of the infinite sequence is called an infinite series and is denoted by

$$a_1 + a_2 + a_3 + \cdots + a_i + \cdots = \sum_{i=1}^{\infty} a_i$$

Example 1: Find the 3rd Partial Sum of $\sum_{i=1}^{\infty} \frac{3}{10^i}$

$$\frac{3}{10^{1}} + \frac{3}{10^{2}} + \frac{3}{10^{3}}$$

Example 2: Find the sum of $\sum_{i=1}^{\infty} \frac{3}{10^i}$

Arithmetic Sequences

An arithmetic sequence is a list of numbers in which the difference between two consecutive terms is constant. The distance is called d

The nth Term of an Arithmetic Sequence

The *n*th term of an arithmetic sequence has the form

$$a_n = a_1 + (n-1)d$$

where d is the common difference between consecutive terms of the sequence and a_1 is the first term of the sequence.

Example 1: Find a formula for the *nth* term of the arithmetic sequence whose common difference is 3 and whose first term is 2.

$$\Omega_{n} = 2 + (n-1)3$$
 $\Omega_{n} = 2 + 3n - 3$
 $\Omega_{n} = 3n - 1$

Example 2: The fourth term of an arithmetic sequence is 20, and the 13th term is 65. Write the first several terms of this sequence.

$$94 = 20$$
 $13 = 65$
 $45 = 20 + 90$
 $45 = 90$
 $3 = 15$
 $3 = 16$
 $3 = 16$
 $3 = 16$
 $3 = 16$
 $4 = 5$

Example 3: Find the ninth term of an arithmetic sequence whose first 2 terms are 2 and 9

$$\Omega_{q} = Z + (q - 1) 7$$

$$\Omega_{q} = 58$$

The Sum of a Finite Arithmetic Sequence (See the proof on page 633.)

The sum of a finite arithmetic sequence with *n* terms is given by

$$S_n = \frac{n}{2}(a_1 + a_n).$$

$$S_n = \frac{n}{2}(a_1 + a_n).$$

Example 4: Find the sum of 1+3+5+7+9+11+13+15+17+19

$$S_0 = \frac{10}{2} (1 + 19) = 100$$

Example 4: Find the 150th partial sum of the arithmetic sequence 5, 16, 27, 38, 49, + $(\bigcirc - 1)$

$$\frac{150}{2} = 5 + (150 - 1) | 1 = 1644$$

$$\frac{150}{2} \left(5 + 1644 \right)$$

$$123,675$$