8.1 Sequences and Series

Homework: None
Warm-Up: Find the Sum (88, 90, 96)
88. $\sum_{i=1}^{6}(3 i-1)=57$
90. $\sum_{k=1}^{5} 4=20$
92. $\sum_{i=0}^{5} 3 i^{2}$
94. $\sum_{j=3}^{5} \frac{1}{j}$
96. $\sum_{k=2}^{5}(k+1)(k-3)=14$
98. $\sum_{j=0}^{4}(-2)^{j}$

SERIES

Definition of a Series

Consider the infinite sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{i}, \ldots$

1. The sum of the first n terms of the sequence is called a finite series or the partial sum of the sequence and is denoted by

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{i=1}^{n} a_{i}
$$

2. The sum of all the terms of the infinite sequence is called an infinite series and is denoted by

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{i}+\cdots=\sum_{i=1}^{\infty} a_{i}
$$

Example 1: Find the Ord Partial Sum of $\sum_{i=1}^{\infty} \frac{3}{10^{t}}$

$$
.333
$$

Example 2: Find the sum of $\sum_{i=1}^{\infty} \frac{3}{10^{t}}=\frac{1}{3}$

Arithmetic Sequences

An arithmetic sequence is a list of numbers in which the difference between two consecutive terms is constant. The distance is called d

The nth Term of an Arithmetic Sequence

The nth term of an arithmetic sequence has the form

$$
a_{n}=a_{1}+(n-1) d
$$

where d is the common difference between consecutive terms of the sequence and a_{1} is the first term of the sequence.

Example 1: Find a formula for the $n t h$ term of the arithmetic sequence whose common difference is 3 and whose first term is 2.

$$
\begin{aligned}
& a_{n}=2+(n-1) 3 \\
& a_{n}=2+3 n-3 \\
& a_{n}=3 n-1
\end{aligned}
$$

Example 2: The fourth term of an arithmetic sequence is 20 , and the 13 th term is 65 . Write the first several terms of this sequence.

$$
\begin{array}{cc}
a_{4}=20 & \\
a_{13}=65 & a_{3}=15 \\
65=20+9 d & a_{2}=10 \\
45=9 d & a_{1}=5 \\
d=5 &
\end{array}
$$

Example 3: Find the ninth term of an arithmetic sequence whose first 2 terms are 2 and 9

The Sum of a Finite Arithmetic Sequence (See the proof on page 633.)
The sum of a finite arithmetic sequence with n terms is given by

$$
S_{n}=\frac{\text { H }}{2}\left(a_{1}+a_{n}\right)
$$

2 ${ }^{\text {st }}$ last
Example 4: Find the sum of $1+3+5+7+9+11+13+15+17+19$

$$
S_{0}=\frac{10}{2}(1+19)=100
$$

Example 4: Find the 150th partial sum of the arithmetic sequence $5,16,27,38,49, \ldots$.

$$
\begin{gathered}
a_{n}=a,+(n-1) d \\
a_{150}=5+(150-1) 11=1644 \\
\frac{n}{2}(\text { first }+195 t) \\
\frac{150}{2}(5+1644) \\
123,675
\end{gathered}
$$

