Determine if the sequence is arithmetic. If it is, find the common difference, the 52 nd term, and the formula for the nth term.

1) $-6,-10,-14,-18, \ldots$
2) $-5,15,35,55, \ldots$

Determine if the sequence is arithmetic. If it is, find the common difference and the term named in the problem.
3) $-36,-38,-40,-42, \ldots$
Find a_{36}
4) $-19,-11,-3,5, \ldots$
Find a_{23}

Determine if the sequence is geometric. If it is, find the common ratio, the 8th term, and the formula for the nth term
5) $3,9,27,81, \ldots$
6) $1,4,16,64, \ldots$

Determine if the sequence is geometric. If it is, find the common ratio and the term named in the problem.
7) $-2,4,-8,16, \ldots$

Find a_{11}
8) $1,3,6,10, \ldots$

Find a_{11}

Find the missing term or terms in each arithmetic sequence.
9) ..., $5, \ldots,-395, \ldots$
10) ..., 31, \qquad , \qquad , 16, ...

Find the missing term or terms in each geometric sequence.
11) ..., -1 , \qquad , $-16, \ldots$
12) ..., $2, \ldots, 50, \ldots$

Evaluate each arithmetic series described.
13) $\sum_{n=1}^{11}(4 n-4)$
14) $\sum_{k=1}^{9}(14-10 k)$

Evaluate each series.
15) $\sum_{k=1}^{5}\left(3 k^{2}+2\right)$
16) $\sum_{a=5}^{10} a(a+2)$

Rewrite each series using sigma notation.
17) $5+25+125+625+3125$
18) $5+10+15+20+25+30$

Evaluate each geometric series described.
19) $\sum_{i=1}^{7} 2 \cdot 6^{i-1}$
20) $\sum_{i=1}^{8} 4 \cdot 2^{i-1}$

Evaluate each infinite geometric series described.
21) $\sum_{i=1}^{\infty}-375 \cdot\left(\frac{1}{5}\right)^{i-1}$
22) $\sum_{i=1}^{\infty}-3.6 \cdot(-1.1)^{i-1}$

Given the recursive formula for an arithmetic sequence find the first five terms.
23) $a_{n}=a_{n-1}+10$
$a_{1}=35$
24) $a_{n}=a_{n-1}+100$
$a_{1}=-13$

Sequences and Series Review

Determine if the sequence is arithmetic. If it is, find the common difference, the 52 nd term, and the formula for the nth term.

1) $-6,-10,-14,-18, \ldots$
2) $-5,15,35,55, \ldots$

Common Difference: $d=-4$
$a_{52}=-210$
Explicit: $a_{n}=-2-4 n$
Common Difference: $d=20$
$a_{52}=1015$
Explicit: $a_{n}=-25+20 n$

Determine if the sequence is arithmetic. If it is, find the common difference and the term named in the problem.
3) $-36,-38,-40,-42, \ldots$
Find a_{36}
4) $-19,-11,-3,5, \ldots$
Find a_{23}
Common Difference: $d=-2$
Common Difference: $d=8$

$$
a_{36}=-106
$$

$$
a_{23}=157
$$

Determine if the sequence is geometric. If it is, find the common ratio, the 8th term, and the formula for the nth term
5) $3,9,27,81, \ldots$
6) $1,4,16,64, \ldots$
Common Ratio: $r=3$
$a_{8}=6561$
Explicit: $a_{n}=3 \cdot 3^{n-1}$

Common Ratio: $r=4$
$a_{8}=16384$
Explicit: $a_{n}=4^{n-1}$

Determine if the sequence is geometric. If it is, find the common ratio and the term named in the problem.
7) $-2,4,-8,16, \ldots$

Find a_{11}
Common Ratio: $r=-2$

$$
a_{11}=-2048
$$

8) $1,3,6,10, \ldots$

Find a_{11}
Not geometric

Find the missing term or terms in each arithmetic sequence.
9) ..., 5, _, $-395, \ldots$
-195
10) ..., 31, _ , _, 16, ... 26, 21

Find the missing term or terms in each geometric sequence.
11) ..., $-1, \ldots,-16, \ldots$
-4
12) ..., 2, _, $50, \ldots$ 10

Evaluate each arithmetic series described.
13) $\sum_{n=1}^{11}(4 n-4)$
14) $\sum_{k=1}^{9}(14-10 k)$
220

Evaluate each series.
15) $\sum_{k=1}^{5}\left(3 k^{2}+2\right)$
16) $\sum_{a=5}^{10} a(a+2)$
175

Rewrite each series using sigma notation.
17) $5+25+125+625+3125 \sum_{m=1}^{5} 5^{m} \quad$ 18) $5+10+15+20+25+30 \sum_{m=1}^{6} 5 m$

Evaluate each geometric series described.
19) $\sum_{i=1}^{7} 2 \cdot 6^{i-1}$
20) $\sum_{i=1}^{8} 4 \cdot 2^{i-1}$
111974 1020

Evaluate each infinite geometric series described.
21) $\sum_{i=1}^{\infty}-375 \cdot\left(\frac{1}{5}\right)^{i-1}-\frac{1875}{4}$
22) $\sum_{i=1}^{\infty}-3.6 \cdot(-1.1)^{i-1}$

No sum
Given the recursive formula for an arithmetic sequence find the first five terms.
23) $a_{n}=a_{n-1}+10$
$a_{1}=35$
$35,45,55,65,75$
24) $a_{n}=a_{n-1}+100$
$a_{1}=-13$
-13, 87, 187, 287, 387

