\qquad

Solve each related rate problem.

1) A hypothetical cube shrinks so that the length of its sides are decreasing at a rate of 4 $\mathrm{m} / \mathrm{min}$. At what rate is the volume of the cube changing when the sides are 8 m each?
2) A hypothetical square grows so that the length of its diagonals are increasing at a rate of 5 $\mathrm{m} / \mathrm{min}$. How fast is the area of the square increasing when the diagonals are 11 m each?
3) A conical paper cup is 10 cm tall with a radius of 10 cm . The cup is being filled with water so that the water level rises at a rate of $4 \mathrm{~cm} / \mathrm{sec}$. At what rate is water being poured into the cup when the water level is 2 cm ?
4) A hypothetical cube grows at a rate of $27 \mathrm{~m}^{3} / \mathrm{min}$. How fast are the sides of the cube increasing when the sides are 7 m each?
5) A hypothetical square shrinks at a rate of $9 \mathrm{~m}^{2} / \mathrm{min}$. At what rate are the sides of the square changing when the sides are 12 m each?
6) A conical paper cup is 20 cm tall with a radius of 10 cm . The bottom of the cup is punctured so that the water leaks out at a rate of $\frac{9 \pi}{4} \mathrm{~cm}^{3} / \mathrm{sec}$. At what rate is the water level changing when the water level is 7 cm ?
7) A spherical balloon is deflated at a rate of $36 \pi \mathrm{~cm}^{3} / \mathrm{sec}$. At what rate is the radius of the balloon changing when the radius is 9 cm ?
8) Oil spilling from a ruptured tanker spreads in a circle on the surface of the ocean. The area of the spill increases at a rate of $81 \pi \mathrm{~m}^{2} / \mathrm{min}$. How fast is the radius of the spill increasing when the radius is 15 m ?
9) A spherical balloon is deflated at a rate of $\frac{36 \pi}{V} \mathrm{~cm}^{3} / \mathrm{sec}$, where V is the volume of the balloon. At what rate is the radius of the balloon changing when the radius is 2 cm ?
10) A hypothetical square grows at a rate of $8 \mathrm{~m}^{2} / \mathrm{min}$. How fast are the diagonals of the square increasing when the diagonals are 10 m each?
\qquad

Solve each related rate problem.

1) A hypothetical cube shrinks so that the length of its sides are decreasing at a rate of 4 $\mathrm{m} / \mathrm{min}$. At what rate is the volume of the cube changing when the sides are 8 m each?

$$
V=\text { volume of cube } s=\text { length of sides } t=\text { time }
$$

Equation: $V=s^{3} \quad$ Given rate: $\frac{d s}{d t}=-4 \quad$ Find: $\left.\frac{d V}{d t}\right|_{s=8}$

$$
\left.\frac{d V}{d t}\right|_{s=8}=3 s^{2} \cdot \frac{d s}{d t}=-768 \mathrm{~m}^{3} / \mathrm{min}
$$

2) A hypothetical square grows so that the length of its diagonals are increasing at a rate of 5 $\mathrm{m} / \mathrm{min}$. How fast is the area of the square increasing when the diagonals are 11 m each?

$$
\begin{aligned}
& A=\text { area of square } \quad x=\text { length of diagonals } \quad t=\text { time } \\
& \text { Equation: } A=\frac{x^{2}}{2} \quad \text { Given rate: } \frac{d x}{d t}=5 \quad \text { Find: }\left.\frac{d A}{d t}\right|_{x=11} \\
& \left.\frac{d A}{d t}\right|_{x=11}=x \cdot \frac{d x}{d t}=55 \mathrm{~m}^{2} / \mathrm{min}
\end{aligned}
$$

3) A conical paper cup is 10 cm tall with a radius of 10 cm . The cup is being filled with water so that the water level rises at a rate of $4 \mathrm{~cm} / \mathrm{sec}$. At what rate is water being poured into the cup when the water level is 2 cm ?

$$
\begin{aligned}
& V=\text { volume of material in cone } h=\text { height } t=\text { time } \\
& \text { Equation: } V=\frac{\pi h^{3}}{3} \text { Given rate: } \frac{d h}{d t}=4 \quad \text { Find: }\left.\frac{d V}{d t}\right|_{h=2} \\
& \left.\frac{d V}{d t}\right|_{h=2}=\pi h^{2} \cdot \frac{d h}{d t}=16 \pi \mathrm{~cm}^{3} / \mathrm{sec}
\end{aligned}
$$

4) A hypothetical cube grows at a rate of $27 \mathrm{~m}^{3} / \mathrm{min}$. How fast are the sides of the cube increasing when the sides are 7 m each?
$V=$ volume of cube $s=$ length of sides $t=$ time
Equation: $V=s^{3} \quad$ Given rate: $\frac{d V}{d t}=27 \quad$ Find: $\left.\frac{d s}{d t}\right|_{s=7}$
$\left.\frac{d s}{d t}\right|_{s=7}=\frac{1}{3 s^{2}} \cdot \frac{d V}{d t}=\frac{9}{49} \mathrm{~m} / \mathrm{min}$
5) A hypothetical square shrinks at a rate of $9 \mathrm{~m}^{2} / \mathrm{min}$. At what rate are the sides of the square changing when the sides are 12 m each?

$$
A=\text { area of square } s=\text { length of sides } t=\text { time }
$$

Equation: $A=s^{2} \quad$ Given rate: $\frac{d A}{d t}=-9 \quad$ Find: $\frac{d s}{d t}$
$\left.\frac{d s}{d t}\right|_{s=12}=\frac{1}{2 s} \cdot \frac{d A}{d t}=-\frac{3}{8} \mathrm{~m} / \mathrm{min}$
6) A conical paper cup is 20 cm tall with a radius of 10 cm . The bottom of the cup is punctured so that the water leaks out at a rate of $\frac{9 \pi}{4} \mathrm{~cm}^{3} / \mathrm{sec}$. At what rate is the water level changing when the water level is 7 cm ?

$$
\begin{aligned}
& V=\text { volume of material in cone } \quad h=\text { height } \quad t=\text { time } \\
& \text { Equation: } V=\frac{\pi h^{3}}{12} \quad \text { Given rate: } \frac{d V}{d t}=-\frac{9 \pi}{4} \quad \text { Find: }\left.\frac{d h}{d t}\right|_{h=7} \\
& \left.\frac{d h}{d t}\right|_{h=7}=\frac{4}{\pi h^{2}} \cdot \frac{d V}{d t}=-\frac{9}{49} \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

7) A spherical balloon is deflated at a rate of $36 \pi \mathrm{~cm}^{3} / \mathrm{sec}$. At what rate is the radius of the balloon changing when the radius is 9 cm ?
$V=$ volume of sphere $r=$ radius $t=$ time
Equation: $V=\frac{4}{3} \pi r^{3} \quad$ Given rate: $\frac{d V}{d t}=-36 \pi \quad$ Find: $\left.\frac{d r}{d t}\right|_{r=9}$
$\left.\frac{d r}{d t}\right|_{r=9}=\frac{1}{4 \pi r^{2}} \cdot \frac{d V}{d t}=-\frac{1}{9} \mathrm{~cm} / \mathrm{sec}$
8) Oil spilling from a ruptured tanker spreads in a circle on the surface of the ocean. The area of the spill increases at a rate of $81 \pi \mathrm{~m}^{2} / \mathrm{min}$. How fast is the radius of the spill increasing when the radius is 15 m ?
$A=$ area of circle $\quad r=$ radius $\quad t=$ time
Equation: $A=\pi r^{2} \quad$ Given rate: $\frac{d A}{d t}=81 \pi \quad$ Find: $\left.\frac{d r}{d t}\right|_{r=15}$

$$
\left.\frac{d r}{d t}\right|_{r=15}=\frac{1}{2 \pi r} \cdot \frac{d A}{d t}=\frac{27}{10} \mathrm{~m} / \mathrm{min}
$$

9) A spherical balloon is deflated at a rate of $\frac{36 \pi}{V} \mathrm{~cm}^{3} / \mathrm{sec}$, where V is the volume of the balloon. At what rate is the radius of the balloon changing when the radius is 2 cm ?

$$
\begin{aligned}
& V=\text { volume of sphere } \quad r=\text { radius } \quad t=\text { time } \\
& \text { Equation: } V=\frac{4}{3} \pi r^{3} \quad \text { Given rate: } \frac{d V}{d t}=-\frac{36 \pi}{V} \quad \text { Find: }\left.\frac{d r}{d t}\right|_{r=2} \\
& \left.\frac{d r}{d t}\right|_{r=2}=\frac{1}{4 \pi r^{2}} \cdot \frac{d V}{d t}=-\frac{27}{128 \pi} \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

10) A hypothetical square grows at a rate of $8 \mathrm{~m}^{2} / \mathrm{min}$. How fast are the diagonals of the square increasing when the diagonals are 10 m each?
$A=$ area of square $x=$ length of diagonals $t=$ time
Equation: $A=\frac{x^{2}}{2} \quad$ Given rate: $\frac{d A}{d t}=8 \quad$ Find: $\frac{d x}{d t}$
$\left.\frac{d x}{d t}\right|_{x=10}=\frac{1}{x} \cdot \frac{d A}{d t}=\frac{4}{5} \mathrm{~m} / \mathrm{min}$
