## PARABOLAS WORKSHEET

Part 1: A parabola is the set of all points $(x, y)$ that are equidistant from a line (the directrix) and a point (the focus).



1. On each graph, label the following: Focus, Directrix, Axis, Vertex, Distance between vertex and focus (called " p ", and the Latus Rectum.

A general parabola has one of the following equations, depending on its axis of orientation.
$y$ term squared: Horizontal axis. Vertex at $(h, k)$.

$$
(y-k)^{2}=4 p \cdot(x-h)
$$

$x$ term squared: Vertical axis. Vertex at $(h, k)$.
$(x-h)^{2}=4 p \cdot(y-k)$

- $\quad p$ is the distance from the vertex $\leftrightarrow$ focus and vertex $\leftrightarrow$ directrix. The sign of $p$ determines the direction.
- The length of the latus rectum is equal to $4 p$, which means that half of the L.R. is the same as directrix $\leftrightarrow$ focus.

2. For each box, fill in any missing information. Plot the vertex, focus, and directrix. Draw the latus rectum, then sketch the parabola between the three points.

$$
\begin{aligned}
& \begin{array}{llll}
\text { Axis: Vertical } & \text { Vertex: }(0,0) & \text { Axis: Horizontal } & \text { Vertex: }(0,0)-3 \\
\text { Focus: }(0,2) & \text { Directrix: } y=-2 & \text { Focus: } 3,0) & \text { Directrix: } x=-3-0)^{2}=12(x-0) \\
p=2 & \text { Equation: } x^{2}=8 y & p=3 & \text { Equation: } y^{2}=12 x
\end{array} \\
& \begin{array}{l}
8=4 P \\
P=2
\end{array}
\end{aligned}
$$

Axis: Vertical
Focus: $(-2,3)$
$p=$ $\qquad$


Axis: Horizontal

Focus: To right of vertex $p=2$ |  | Equation: |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |

Axis: $\qquad$
Focus: $\qquad$
$p=$ $\qquad$

Vertex: $\qquad$ Directrix: $y=1$

Equation: $(x+2)^{2}=-4 y$


Axis: $\qquad$

Focus: $\qquad$
$p=$ $\qquad$

Vertex: $(3,-4)$
Directrix: $x=4$

Equation: $\qquad$

