9.3 Hyperbolas

Homework:

Warm-Up:

1. What were your findings from the Folding Activity about the hyperbola?
2. And \downarrow. Skip \#113

True or False? In Exercises 111-117, determine whether the statement is true or false. Justify your answer.
111. The equation $x^{2}+(y+5)^{2}=25$ represents a circle with its center at the origin and a radius of 5 .
112. The graph of the equation $x^{2}+y^{2}=r^{2}$ will have x-intercepts $(\pm r, 0)$ and y-intercepts $(0, \pm r)$.
113. A circle is a degenerate conic.
114. It is possible for a parabola to intersect its directrix.
115. The point which lies on the graph of a parabola closest to its focus is the vertex of the parabola.

9.3 Hyperbolas

Homework: Fhish Worksheet hone
Warm-Up:

1. What were your findings from the Folding Activity about the hyperbola?
2. And \downarrow. Skip \#113

True or False? In Exercises 111-117, determine whether the statement is true or false. Justify your answer.
111. The equation $x^{2}+(y+5)^{2}=25$ represents a circle with its center at the origin and a radius of 5 .
112. The graph of the equation $x^{2}+y^{2}=r^{2}$ will have x-intercepts $(\pm r, 0)$ and y-intercepts $(0, \pm r)$.
113. A circle is a degenerate conic.
114. It is possible for a parabola to intersect its directrix.
115. The point which lies on the graph of a parabola closest to its focus is the vertex of the parabola.

Standard Form Equation of a Hyperbola

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

Horizontal
Hyperbola

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

Vertical
 Hyperbola

* The center of a hyperbola is at the point (\mathbf{h}, \mathbf{k}) in either form

\& For either hyperbola, $c^{2}=a^{2}+b^{2}$

Where c is the distance from the center to a focus point.

Example 1: Find the standard form equation of the hyperbola with foci $(-1,2)$ and $(5,2)$ and vertices $(0,2)$ and $(4,2)$.

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2} \\
9 & =4+b^{2} \\
5 & =b^{2}
\end{aligned}
$$

$\begin{array}{ll}\frac{(x-2)^{2}}{4}-\frac{(y-2)^{2}}{5}=1 \quad \text { Center }=(2, z) & \begin{array}{l}y=2 \pm \frac{\sqrt{5}}{2}(x-2) \\ \text { Example : Sketch the hyperbola whose equation is } 4 x^{2}-y^{2}=16\end{array} \\ =\text { asymptotes } \uparrow\end{array}$

$$
\begin{array}{ll}
\text { Center }=(2, z) & \begin{array}{l}
y=2 \pm \frac{\sqrt{5}}{2}(X-2) \\
\\
\text { asymptotes }
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \frac{4 x^{2}}{16}-\frac{y^{2}}{16}=\frac{16}{16} \\
& \frac{x^{2}}{4}-\frac{y^{2}}{16}=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Center }=(0,0) \\
& a=2 \\
& b=4 \\
& C^{2}=a^{2}+b^{2} \\
& C^{2}=20=2 \sqrt{5}
\end{aligned}
$$

Asymptotes for a Hyperbola

| Horizontal Hyperbola |
| :--- | :--- |
| $y=k \pm \frac{b}{a}(x-h)$ |\quad| Vertical Hyperbola |
| :--- |
| $y=k \pm \frac{a}{b}(x-h)$ |

$$
y=0 \pm \frac{4}{2}(x-0)
$$

$$
y= \pm 2 x
$$

9.3 Hyperis

Homework: Finish Vra ot. This review is due with the quiz on Tuesdavl
Warm-Up: Sketch the hypen iven by $y=4 x^{2}-3 y^{2}+8 x+16=0$

Asymptotes for a Hyperbola

Horizontal Hyperbola $y=k \pm \frac{b}{a}(x-h)$	Vertical Hyperbola $y=k \pm \frac{a}{b}(x-h)$

