8.3 Geometric Sequences and Series

What is a geometric sequence? A sequence is geometric when the ratios of consecutive terms are the same. In other words, to get from one term to the next, you *multiply* by the same number. That number is the ratio.

What is an example of a geometric sequence?

Geometric sequence: 2, 4, 8, 16

 $S_{n} = \sum_{i=1}^{n} a_{1} r^{i-1} = a_{1} \left(\frac{1-r^{n}}{1-r} \right)$

The common ratio is $\frac{4}{2} = 2$. This means you multiply by two to get the next term.

How do I find the sum of a finite geometric sequence?

How do I find the ratio? Divide two consecutive terms. For example: If a sequence is geometric, and $a_1 = 1$ and $a_2 = 4$, then the ratio is $\frac{4}{1} = 4$.

How do I find the nth term of a geometric sequence?

$$a_n = a_1 r^{n-1}$$

How do I find the sum of an infinite geometric

e sum

sequence? # A finite su
only exists

$$S = \sum_{i=0}^{\infty} a_{1}r^{i} = \frac{a_{1}}{1-r} \quad \text{when } r < 1$$

$$V = r_{0} + i$$

I Do: Calculatora	You Do:
1a. Write the first five terms of the geometric sequence whose first term is $a_1 = 3$ and whose common ratio is $r = 2$ $a_1 = 3$ $a_2 = 6$ $a_3 = 12$ $a_5 = 48$	1b. Write the first five terms of the geometric sequence whose first term is $a_1 = 2$ and $r = \frac{1}{3}$
2a. Find the 15th term of the geometric sequence whose first term is $a_1 = 20$ and whose common ratio is $r = 1.05$	2b. Find the 12th term of the geometric sequence whose first term is $a_1 = -\frac{1}{128}$ and whose common ratio is $r = 2$
$G_{15} = 20(1.05)^{15-1}$ = 39.60	

3a. Find a formula for the nth term of the following geometric sequence. What is the ninth term? 5, 15, 45 $G_n = 5(3)^{n-1}$ $G_q = 5(3)^{q-1}$ $= 32,805$	3b. Find a formula for the nth term of the following geometric sequence. What is the 22nd term? 4, 8, 16
4a. The 4th term of a geometric sequence is 125, and the 10th term is $\frac{125}{64}$. Find the 14th term. Assume at the terms of the sequence are positive. $\begin{array}{c} Q_{10} = & Q_{4} \int_{0}^{6} & \left(6 + trms\right) \\ \frac{125}{64} = 125r^{6} & Q_{4} \text{ and } q_{16} \end{array} \qquad \begin{array}{c} 4 + erms \ b/w \\ + he \ 10th \ c \ 14 \\ he \ 10th \ c \ 14 \\ + erm \end{array}$	4b. The second term of a geometric sequence is -18 and the fifth term is $\frac{2}{3}$, find the 6th term.
$\alpha_{14} = \frac{125}{64} \left(\frac{1}{2}\right)^{4} = \frac{125}{125}$	th
64 (2) 1024	
5a. Find the following sum. $\sum_{n=1}^{12} 4(0.3)^n \text{finite}$ $(1 - 1)^n (1 - 1)^n (1 - 1)^n$	5b. Find the following sum. $\sum_{n=0}^{20} 3(\frac{3}{2})^n$
$G_{1} = 4(0.3)' = 4(0.3)$ $4(0.3)(\frac{1-0.3'^{2}}{1-0.3}) = 1.71$	
6a. Find the following sum. $\sum_{n=0}^{\infty} 10 \left(\frac{4}{5}\right)^n$	6b. Find the following sum. $\sum_{n=1}^{\infty} 8\left(\frac{5}{3}\right)^{n-1}$
$a_{1} = 10 \text{ (plug in Zero, that's)}$ $\frac{a_{1}}{1-r} = \frac{10}{1-\frac{4}{5}} = \frac{10}{\frac{1}{5}} = 50 \text{ start}$	5)