Chapter 1: Can you...

- Compose functions? Meaning, given $f(x)$ and $g(x)$, could you determine $f(g(x))$ and $g(f(x))$?
- Evaluate a function at a value?
- Determine if a function is one-to-one?
- Determine the inverse of a function?
- Determine the domain/range of a function? Of a rational function?
- Graph piecewise functions?
- Describe transformations of a function?

1. Given $f(x)=2(x+1)^{2}$ and $g(x)=(x+3)(x-3)$
a. Find $f \circ g$
b. Determine $g(f(x)$
c. Find $g\left(c^{2}+1\right)$
d. Write $h(x)$ and $k(x)$ so that $f(x)=h(k(x))$
e. Determine the domain of $f(x)$
f. Is $f(x)$ one-to-one?
2. Graph the function

$$
f(x)= \begin{cases}-4, & x \leq-2 \\ x-2, & -2<x<2 \\ -2 x+4, & x \geq 2\end{cases}
$$

Chapter 2: Can you...

- Write the equation of a parabola in both vertex and quadratic form?
- Complete the square in order to determine the vertex of a parabola?
- Sketch the graph of a parabola?
- Determine if the vertex is a minimum or maximum value of the function?
- Find all solutions to a quadratic equation, both real and imaginary?
- Divide polynomial functions?
- Write a polynomial function given both real and imaginary zeros?
- Determine all of the roots (zeros) of a function given one of the zeros?
- Determine major characteristics of a rational function? This includes vertical asymptotes, horizontal asymptotes, holes, slant asymptotes, etc....
- Sketch the graph of a polynomial?
- Determine the end-behavior of a function?

1. Find the vertex of each parabola. Then, determine if the vertex is a minimum or maximum value. Finally, find the zeros of the function.
a. $f(x)=x^{2}+2 x-35$
b. $f(x)=4 x^{2}-8 x-1$
2. Find the missing pieces of information given:

- Point on the graph: $(0,9)$
- Vertex: $(-2,5)$
a. Quadratic equation
b. Equation in standard form
c. X-intercepts
d. graph

2. Sketch the graph of the polynomial
a. $f(x)=-x^{4}+9 x^{2}-20$
3. Divide $f(x)=x^{4}+7 x^{3}+2 x^{2}+3 x+14$ by $x+2$
4. Write the equation for a graph that has x-intercepts at $x=6$ and $x=-3$, a vertical asymptote at $x=2$ and a hole at $x=-2$ and $x=1$. You can leave your answer as a product of linear factors.
5. Find the polynomial function with real coefficients that has $-1,1$, and $2 i$ as zeros.
6. Simplify to standard (a+bi) form:
g. $\mathrm{f}(\mathrm{x})=\frac{4+i}{4-i}$
h. $\mathrm{f}(\mathrm{x})=\frac{5}{1+i}-\frac{3 i}{1-i}$
7. Graph $f(x)=\frac{3 x-3}{2 x^{2}+2 x-4}$. Give the x-int, y-int, V.A., H.A., slant, and holes.

Chapter 3: Can you...

- Evaluate \log and natural \log functions without a calculator?
- Rewrite exponential equations in logarithmic form?
- Rewrite logarithmic equations in exponential form?
- Condense logarithmic expressions?
- Expand logarithmic expressions?
- Solve logarithmic and exponential equations?
- Graph exponential and logarithmic functions without a calculator?

1. Graph the following and find the domain/range, asymptotes, and intercepts
a. $f(x)=4-e^{-2 x}$
b. $f(x)=\log _{3}(x-2)-3$
2. Find the exact value of $\log _{1 / 3} 27$
3. Expand/Condense the logarithmic expressions with the properties of log
4. $\log _{5} x w^{2}$
5. $\frac{1}{2} \log _{2} x+\log _{2} u-5 \log _{2} z-3 \log _{2} y$
6. Given that $\ln (3)=\ln (x-2)-\ln (x)$, find the value of x .

Chapter 4: Can you...

- Write degrees in radian form?
- Write radians in degree form?
- Solve a right triangle for a missing side?
- Determine which quadrant an angle falls in?
- Evaluate all six trigonometric functions of any angle?
- Determine a reference angle, θ^{\prime} ?

1. Find the coterminal angle between 0 and 2π for the angle $\frac{-25 \pi}{12}$	2. Given $\sin \theta=-\frac{2}{3}$ and that $\cos \theta>0$, determine the remaining 5 trigonometric functions.
3. Given that $\sin \theta<0$ and $\sec \theta<0$, determine the quadrant in which you would find θ.	4. Given $\theta=\frac{5 \pi}{3}$, determine the reference angle, θ^{\prime}.

Chapter 7: Can you...

- Perform matrix operations (multiplication, addition, subtractions, etc....) with and without a calculator?
- Find the determinant of a 2×2 matrix with and without a calculator?
- Find the inverse of a 2×2 matrix with and without a calculator?

1. Perform the operations 2. Determine the determinant $\left[\begin{array}{ccc}4 & 0 & -4 \\ 4 & -3 & -1\end{array}\right] \cdot\left(\begin{array}{cc}0 \\ -5 \\ -5 \\ 0\end{array}\right]$ -2 3$\|$ 3. Find the inverse $\left[\begin{array}{ll}9 & 9 \\ 9 & 8\end{array}\right]$

