FINAL REVIEW WORKSHEET

Chapter 1: Can you...

- Compose functions? Meaning, given f(x) and g(x), could you determine f(g(x)) and g(f(x))?
- Evaluate a function at a value?
- Determine if a function is one-to-one?
- Determine the inverse of a function?
- Determine the domain/range of a function? Of a rational function?
- Graph piecewise functions?
- Describe transformations of a function?

1. Given
$$f(x) = 2(x+1)^2$$
 and $g(x) = (x+3)(x-3)$
a. Find $f \circ g$
b. Determine $g(f(x)$
c. Find $g(c^2+1)$
d. Write $h(x)$ and $k(x)$ so that
 $f(x) = h(k(x))$
e. Determine the domain of $f(x)$
f. Is $f(x)$ one-to-one?

Chapter 2: Can you...

- Write the equation of a parabola in both vertex and quadratic form?
- Complete the square in order to determine the vertex of a parabola?
- Sketch the graph of a parabola?
- Determine if the vertex is a minimum or maximum value of the function?
- Find all solutions to a quadratic equation, both real and imaginary?
- Divide polynomial functions?
- Write a polynomial function given both real and imaginary zeros?
- Determine all of the roots (zeros) of a function given one of the zeros?
- Determine major characteristics of a rational function? This includes vertical asymptotes, horizontal asymptotes, holes, slant asymptotes, etc....
- Sketch the graph of a polynomial?
- Determine the end-behavior of a function?

1. Find the vertex of each parabola. Then, determine if the vertex is a minimum or maximum value. Finally, find the zeros of the function. a. $f(x) = x^2 + 2x - 35$ b. $f(x) = 4x^2 - 8x - 1$	2. Sketch the graph of the polynomial a. $f(x) = -x^4 + 9x^2 - 20$
 3. Find the missing pieces of information given: Point on the graph: (0, 9) Vertex: (-2, 5) a. Quadratic equation b. Equation in standard form c. X-intercepts d. graph 	4. Divide $f(x) = x^4 + 7x^3 + 2x^2 + 3x + 14$ by $x + 2$

5. Write the equation for a graph that has x-intercepts at $x = 6$ and $x = -3$, a vertical asymptote at $x = 2$ and a hole at $x = -2$ and $x = 1$. You can leave your answer as a product of linear factors.	6. Simplify to standard (a+bi) form: g. $f(x) = \frac{4+i}{4-i}$ h. $f(x) = \frac{5}{1+i} - \frac{3i}{1-i}$
7. Find the polynomial function with real coefficients that has -1 , 1, and 2i as zeros.	8. Graph f(x) = $\frac{3x-3}{2x^2+2x-4}$. Give the x-int, y-int, V.A., H.A., slant, and holes.

Chapter 3: Can you...

- Evaluate log and natural log functions without a calculator?
- Rewrite exponential equations in logarithmic form?
- Rewrite logarithmic equations in exponential form?
- Condense logarithmic expressions?
- Expand logarithmic expressions?
- Solve logarithmic and exponential equations?
- Graph exponential and logarithmic functions without a calculator?

1. Graph the following and find the domain/range, asymptotes, and intercepts a. $f(x) = 4 - e^{-2x}$ b. $f(x) = log_3(x-2) - 3$	 2. Expand/Condense the logarithmic expressions with the properties of log 1. log₅xw² 2. ¹/₂log₂x + log₂u - 5log₂z - 3log₂y
3. Find the exact value of $log_{1/3}27$	4. Rewrite $4^4 = 256$ in logarithmic form
5. Given that $ln(3) = ln(x-2) - ln(x)$, find the value of x.	

Chapter 4: Can you...

- Write degrees in radian form?
- Write radians in degree form?
- Solve a right triangle for a missing side?
- Determine which quadrant an angle falls in?
- Evaluate all six trigonometric functions of any angle?
- Determine a reference angle, θ' ?

1. Find the coterminal angle between 0 and 2π for the angle $\frac{-25\pi}{12}$	2. Given $sin\theta = -\frac{2}{3}$ and that $cos\theta > 0$, determine the remaining 5 trigonometric functions.
3. Given that $sin\theta < 0$ and $sec\theta < 0$, determine the quadrant in which you would find θ .	4. Given $\theta = \frac{5\pi}{3}$, determine the reference angle, θ' .

Chapter 7: Can you...

- Perform matrix operations (multiplication, addition, subtractions, etc...) with and without a calculator?
- Find the determinant of a 2x2 matrix with and without a calculator?
- Find the inverse of a 2x2 matrix with and without a calculator?

