expanding / condensing Logarithmic functions Review

Expanding Logarithmic Expressions \rightarrow Use the properties of logarithms to expand the expression as a sum, difference, and/or constant multiple of logarithms.

1. $\log _{5} 5 x^{2}$
2. $\ln \frac{x+3}{x y}$
3. $\log _{4} 16 x y^{2}$
4. $\ln \frac{x y^{5}}{\sqrt{z}}$

Condensing Logarithmic Expressions \rightarrow Condense the expression to the logarithm of a single quantity.

1. $\log _{2} 9+\log _{2} x$
2. $\log _{6} y-2 \log _{6} z$
3. $\frac{1}{2} \ln (2 x-1)-2 \ln (x+1)$
4. $3\left[\ln x-2 \ln \left(x^{2}+1\right)\right]+2 \ln 5$

SOLVInG EXPOnential/LOGarithmic Functions Review

Solving an Exponential Equation \rightarrow Solve the exponential equation algebraically. Round your result to 3 decimal places.

1. $3 e^{-5 x}=132$
2. $2 e^{x-3}-1=4$
3. $-e^{x / 2}+1=\frac{1}{2}$
4. $2\left(12^{x}\right)=190$
5. $-4\left(5^{x}\right)=-68$
6. $e^{2 x}-6 e^{x}+8=0$

Solving a Logarithmic Equation \rightarrow Solve the logarithmic equation algebraically. Round your result to 3 decimal places.

1. $\ln 3 x=6.4$
2. $\ln x-\ln 5=2$
3. $\ln \sqrt{x+1}=2$
4. $\log _{4}(x-1)=\log _{4}(x-2)-\log _{4}(x+2)$
5. $\quad \log _{10}(1-x)=-1$
6. $\log _{10}(-x-4)=2$

extraneous solutions Review

Solving a logarithmic equation and checking for extraneous solutions \rightarrow Solve the logarithmic equation algebraically. Round your result to 3 decimal places. Check for extraneous solutions.

1. $\log 5 x+\log (x-1)=2$
2. $\ln (5 x+1)=\ln (3 x+7)$
3. $\log (x+2)+\log (x-1)=1$
4. $\ln (x)+\ln (x-1)=1$
5. $3 \log _{2} x=15$

Graphing exponential/ Logarithmic functions Review

Graphing Exponential Functions \rightarrow Find the range, horizontal asymptote, and \boldsymbol{y}-intercept of the exponential function, and sketch the graph by hand.

1. $f(x)=4^{x}$
2. $f(x)=e^{x}+2$

3. $f(x)=3-e^{-x}$

Graphing Logarithmic Functions \rightarrow Find the domain, vertical asymptote, and x-intercept of the logarithmic function, and sketch its graph by hand.

1. $f(x)=-\log _{2} x+5$
2. $f(x)=\log _{5}(x+2)-3$
3. $f(x)=\log _{5}(x-3)$
${ }^{* *}$ Notice the differences in the graphs of logarithmic and exponential functions: i.e. domain vs. range, x-intercept vs. y-intercept. Why are there these differences?

ReWriting/simplifying Logarithms

Rewriting Equations \rightarrow Write the logarithmic equation in exponential form or write the exponential equation in logarithmic form.

1. $\log _{5} 125=3$
2. $\log _{10} \frac{1}{100}=-2$
3. $12^{-1}=\frac{1}{12}$

Simplifying a Logarithm \rightarrow Use the properties of logarithms to rewrite and simplify the logarithmic expression.

1. $\quad \ln \sqrt{e^{5}}$
2. $\log _{3}\left(9^{2} \cdot 2^{4}\right)$

