1. Be able to sketch the graph of a function and describe how the graph is related to the graph of $y=x^{2}$.

a. $f(x)=(x+1)^{2}$	b. $f(x)=-(x-3)^{2}+1$

2. Be able to describe the graph of the quadratic function and identify the vertex and x -intercept (s).
$f(x)=x^{2}+10 x+14$

Hmm... What IS the
standard form of a quadratic equation?
3. Be able to write the equation of a parabola in standard form.

Vertex: $(-2,5)$; Point (0, 9)	Vertex: $(1 / 2,1)$; Point $(-2,-21 / 5)$

4. Be able to determine the x -intercepts of a function graphically and algebraically.
$f(x)=2 x^{2}-7 x-30$
5. Be able to factor a function in order to find the zeros and their multiplicity.

$f(t)=t^{3}-4 t^{2}+4 t$	$h(t)=t^{2}-6 t+9$

6. Be able to sketch the graph of a function by (a) applying the Leading Coefficient Test and (b) finding the zeros of a function.

What IS the leading

 coeffiencient test?The Factor Theorem states the following are equivalent:

$(x-a)$ is a factor of the polynomial $\rightarrow f(a)=0 \rightarrow a$ is a zero of f

7. Be able to use division (synthetic/box method) to show that x is a solution of a polynomial equation, and use the result to factor the polynomial completely. Additionally, be able to list all real solutions of the equation.
$x^{3}-28 x-48=0$ and $x=-4$

$$
48 x^{3}-80 x^{2}+41 x-6 \text { and } x=\frac{1}{2}
$$

8. Be familiar with operations with complex numbers. Perform the following operations and write the results in standard form.
a. $5(-2+3 i)$
b. $(2-i)(4+3 i)$
c. $(3+2 i)(3-2 i)$
d. $4 i\left(-1+5^{\circ}\right)$
e. $(3+2 i)^{2}$

f. $\frac{2+3 i}{4-2 i}$
9. Be able to find ALL zeros of a polynomial function and write the polynomial as a product of linear factors.

$f(x)=3 x^{3}-5 x^{2}+48 x-80$	$h(x)=x^{2}-4 x+1$

10. Be able to sketch the graph of a polynomial function. (These are the same problems as before, you just need to graph them)

$f(x)=3 x^{3}-5 x^{2}+48 x-80$	$h(x)=x^{2}-4 x+1$

11. Be able to sketch the graph of a rational function. You should determine the zeros, holes, asymptotes, and the domain.

$f(x)=\frac{3 x}{x^{2}-x-2}$	$h(x)=\frac{x^{2}-16}{x-4}$

