1. An airplane is flying with an airspeed of 475 miles per hour with a bearing of 70°. An 80 mile per hour wind is blowing from a bearing of of 120°.
a. Draw a vector diagram that models this situation.
b. If no correction is made for the wind, what is the final bearing of the plane?
c. If no correction is made for the wind, what is the final ground speed of the plane?
d. What will the plane's coordinates be after 60 minutes? 30 minutes?
2. Determine the component form and magnitude of the vector \mathbf{w} that has initial point $(-8,-12)$ and terminal point $(4,1)$.
3. Given $\mathbf{u}=\langle 0,-4\rangle$ and $\mathbf{v}=\langle 4,6\rangle$, determine the following:
a. $2 \mathbf{v}+\mathbf{u}$
b. $\mathbf{u}-3 \mathbf{v}$
c. $5 \mathbf{u}-\mathbf{v}$
4. Determine the angle between vectors $\mathbf{u}=7 \mathbf{i}+2 \mathbf{j}$ and $\mathbf{v}=-4 \mathbf{j}$. Are these vectors orthogonal?
5. Determine the component form and magnitude of the vector \mathbf{w} that has initial point $(-8,-12)$ and terminal point $(4,1)$.
6. Given $\mathbf{u}=<0,-4>$ and $\mathbf{v}=\langle 4,6\rangle$, determine the following:
d. $2 \mathbf{v}+\mathbf{u}$
e. $\mathbf{u}-3 \mathbf{v}$
f. $5 \mathbf{u}-\mathbf{v}$
7. Determine the angle between vectors $\mathbf{u}=7 \mathbf{i}+2 \mathbf{j}$ and $\mathbf{v}=-4 \mathbf{j}$. Are these vectors orthogonal?
8. An airplane is flying with an airspeed of 475 miles per hour with a bearing of 70°. An 80 mile per hour wind is blowing from a bearing of of 120°.
e. Draw a vector diagram that models this situation.
f. If no correction is made for the wind, what is the final bearing of the plane?
g. If no correction is made for the wind, what is the final ground speed of the plane?
h. What will the plane's coordinates be after 60 minutes? 30 minutes?
