Topic 1: Extrema

1. Find the absolute extrema for each of the following on $[-2,5]$.
a. $f(x)=2 x^{3}-6 x$
b. $f(x)=\frac{3 x^{2}}{3-2 x}$
2. Determine the intervals on which the function is increasing/decreasing and local (relative) extrema.
a. $y=x^{3 / 4}-3 x$
b. $y=(x-1)^{2}(x+3)$

Topic 2: Concavity and Points of Inflection

Determine the intervals on which the functions are concave up/down and any points of inflection.

1. $y=-x^{3}+6 x^{2}-9 x-1$
2. $y=x+2 \sin x,(-\pi, \pi)$

Topic 3: $y=h^{\prime}(x)$
4. Let h be a function defined for all $x \neq 0$ such that $h(4)=-3$ and the derivative of h is given by $h^{\prime}(x)=\frac{x^{2}-2}{x}$ for all $x \neq 0$.
(a) Find all values of x for which the graph of h has a horizontal tangent, and determine whether h has a local maximum, a local minimum, or neither at each of these values. Justify your answers.
(b) On what intervals, if any, is the graph of h concave up? Justify your answer.
(c) Write an equation for the line tangent to the graph of h at $x=4$.
(d) Does the line tangent to the graph of h at $x=4$ lie above or below the graph of h for $x>4$? Why?

Topic 4: Speed/Velocity

3. An object moves along the x-axis with initial position $x(0)=2$. The velocity of the object at time $t \geq 0$ is given by $v(t)=\sin \left(\frac{\pi}{3} t\right)$.
(a) What is the acceleration of the object at time $t=4$?
(b) Consider the following two statements.

Statement I: For $3<t<4.5$, the velocity of the object is decreasing.
Statement II: For $3<t<4.5$, the speed of the object is increasing.
Are either or both of these statements correct? For each statement provide a reason why it is correct or not correct.

Topic 5: Graph of $f^{\prime}(x)$

2. Let f be the function defined for $x \geq 0$ with $f(0)=5$ and f^{\prime}, the first derivative of f, given by $f^{\prime}(x)=e^{(-x / 4)} \sin \left(x^{2}\right)$. The graph of $y=f^{\prime}(x)$ is shown above.
(a) Use the graph of f^{\prime} to determine whether the graph of f is concave up, concave down, or neither on the interval $1.7<x<1.9$. Explain your reasoning.
(b) On the interval $0 \leq x \leq 3$, find the value of x at which f has an absolute maximum. Justify your answer.
(c) Write an equation for the line tangent to the graph of f at $x=2$.

