9.1 Circles: Notes and Practice

Definition of a Circle

A circle is the set of all points (x, y) in a plane that are equidistant from a fixed point (h, k), called the center of the circle. (See Figure 9.3.) The distance r between the center and any point (x, y) on the circle is the radius.

Standard Form of the Equation of a Circle

The standard form of the equation of a circle is

$$
(x-h)^{2}+(y-k)^{2}=r^{2} .
$$

The point (h, k) is the center of the circle, and the positive number r is the radius of the circle. The standard form of the equation of a circle whose center is the origin, $(h, k)=(0,0)$, is

$$
x^{2}+y^{2}=r^{2} .
$$

Example by me:	You try something similar:
Example 1: The point $(1,4)$ is on a circle whose center is at $(-2,-3)$. Write the standard form of the equation of the circle. we can find the radius using the distance formula: $\begin{aligned} & \sqrt{(1--2)^{2}+(4--3)^{2}}=\sqrt{9+49} \\ &=\sqrt{58}=r \\ &(x+2)^{2}+(y+3)^{2}=58 \end{aligned}$	You try! The point $(0,1)$ is on a circle whose center is at $(-3,-2)$. Write the standard form of the equation of a circle. $\begin{aligned} & (x-h)^{2}+(y-k)^{2}=r^{2} \\ & (x+3)^{2}+(y+2)^{2}=18 \\ & \sqrt{(0--3)^{2}+(1--2)^{2}}=\sqrt{18} \end{aligned}$
Example 2: Find the x - and y - intercepts of the graph of the circle given by the equation $(x-4)^{2}+(y-2)^{2}=16$ $\begin{array}{lc} x-m+=\text { when } y=0 & y \text {-int }=\text { when } x=0 \\ (x-4)^{2}+(0-2)^{2}=16 & (-4)^{2}+(y-2)^{2}=16 \\ (x-4)^{2}+4=16 & 16+(y-2)^{2}=16 \\ (x-4)^{2}=12 & (y-2)^{2}=0 \\ x-4=2 \sqrt{3} & y-2=0 \\ x=(\pm 2 \sqrt{3}+4,0) & y=2, \text { so }(0,2)- \end{array}$	You try! Find the x - and y - intercepts of the graph of the circle given by the equation $(x+3)^{2}+y^{2}=16$ $\begin{array}{cc} x \text {-int } & y \text {-int } \\ (x+3)^{2}=16 & 9+y^{2}=16 \\ x+3= \pm 4 & y^{2}=7 \\ x= \pm 4-3 & y= \pm \sqrt{7}(0, \pm \sqrt{7} \\ (1,0)(-7,0) & \text { or }(\pm 4-3,0) \end{array}$
Example 3: Determine the center and the radius of a circle with equation $x^{2}+y^{2}=49$ $\begin{aligned} & \text { Center }=(0,0) \\ & \text { Kadius }=\sqrt{49}=7 \end{aligned}$	You try! Determine the center and the radius of a circle with equation $(x-1)^{2}+(y-2)^{2}=16$ $\text { Center }=(1,2) \quad r=4$

Example 4: Write the standard form of the equation of a circle given the center at $(-3,-1)$ and radius $4 \sqrt{2}$.

You try! Write the standard form of the equation of a circle given the center at $(1,2)$ and radius of 3 .

$$
(x-1)^{2}+(y-2)^{2}=9
$$

$$
\begin{aligned}
& (x+3)^{2}+(y+1)^{2}=(4 \sqrt{2})^{2} \\
& (x+3)^{2}+(y+1)^{2}=32
\end{aligned}
$$

Example 5: Graph the circle in Example 2.

Example 6: Identify the center and radius of a circle given by $4 x^{2}+4 y^{2}+12 x-24 y+41 \%$ © hen, graph the circle.

For x and y. But first,
regrow p x and y together
$4 x^{2}+12 x+4 y^{2}-24 y=-41$
$4\left(x^{2}+3 x+\frac{9 / 4}{4}\right)+4\left(y^{2}-6 y+9\right.$
$4(x+3 / 2)^{2}+4(y-3)^{2}=4$

