8.1 Sequences and Series

Homework: None
Warm-Up: \# 54, 56, $58 \downarrow$

$$
a_{k} a_{k+1}
$$

A Recursive Sequence In Exercises 53-58, write the first five terms of the sequence defined recursively.
${ }^{\prime}$ 53. $a_{1}=28, \quad a_{k+1}=a_{k}-4$
54. $a_{1}=15, \quad a_{k+1}=a_{k}+3$
$\begin{aligned} 54.15+3 & =18=a_{2} \\ a_{3} & =18+3=21 \\ a_{4} & =21+3=24 \\ a_{5} & =24+3=27\end{aligned}$
55. $a_{1}=3, \quad a_{k+1}=2\left(a_{k}-1\right)$
56. $a_{1}=32, \quad a_{k+1}=\frac{1}{2} a_{k}$
'57. $a_{0}=1, a_{1}=3, \quad a_{k}=a_{k-2}+a_{k-1}$
56. $a_{2}=\frac{1}{2}(32)=16$ $a_{3}=\frac{1}{2}(16)=8$
$a_{4}=4$
$a_{5}=2$
58. $a_{0}=-1, a_{1}=1, \quad a_{k}=a_{k-2}+a_{k-1}$

$$
\text { 58. } \begin{aligned}
& a_{2}=a_{2-2}+a_{2-1}=0 \\
& a_{3}=1 \\
& a_{4}=1 \\
& a_{5}=2
\end{aligned}
$$

Simplifying Factorial Expressions:
Example 1: $\frac{8!}{2!\cdot 6!}$

$$
\begin{gathered}
\frac{8 \cdot 7 \cdot 6 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 6 \cdot 5 \cdot 3 \cdot 2 \cdot 1} \\
\frac{56}{2}=28
\end{gathered}
$$

Example 2: $\frac{n!}{(n-1)!}$

$$
\begin{aligned}
& \frac{3!}{2!}=\frac{3 \cdot 2-1}{2-1} \\
& =3 \\
& =n
\end{aligned}
$$

Definition of Summation Notation

The sum of the first n terms of a sequence is represented by

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+a_{4}+\cdots+a_{n}
$$

where i is called the index of summation, n is the upper limit of summation, and 1 is the lower limit of summation.

Example 3: $\sum_{i=1}^{5} 3 i$
"the sum from $i=1$ to

$$
\begin{gathered}
5 \text { of } 3 i^{\prime \prime} \\
3(1)+3(2)+3(3)+3(4)+3(5) \\
3+6+9+12+15=45
\end{gathered}
$$

Example 4: $\sum_{k=3}^{6}\left(1+k^{2}\right)$

$$
\begin{gathered}
\left(1+3^{2}\right)+\left(1+4^{2}\right)+\left(1+5^{2}\right) \\
+\left(1+6^{2}\right) \\
10+17+26+37=90
\end{gathered}
$$

Example 5: $\sum_{n=0}^{8} \frac{1}{n!}$

$$
\begin{aligned}
& \frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!} \\
& 0!=1+\frac{1}{5!}+\frac{1}{6!}+\frac{1}{7!}+\frac{1}{8!}
\end{aligned}
$$

Properties of Sums:
Properties of Sums (See the proofs on page 632.)

1. $\sum_{i=1}^{n} c=c n, \quad c$ is a constant.
2. $\sum_{i=1}^{n} c a_{i}=c \sum_{i=1}^{n} a_{i}, \quad c$ is a constant.
3. $\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i}$
4. $\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)=\sum_{i=1}^{n} a_{i}-\sum_{i=1}^{n} b_{i}$

Homework

Practice:
87. $\sum_{i=1}^{3}(2 i+1)$
89. $\sum_{k=1}^{4} 10$
91. $\sum_{i=0}^{4} i^{2}$
93. $\sum_{k=0}^{3} \frac{1}{k^{2}+1}$
95. $\sum_{i=1}^{4}\left[(i-1)^{2}+(i+1)^{3}\right]$
97. $\sum_{i=1}^{4} 2^{i}$

