Discovering the Double-Angle Formulas

Part 1: What is a double-angle?

Part 2: Sine of a double-angle $\rightarrow \operatorname{Sin}(+)$
a. Recall from the last section, the sine of the sum of two different angles: $\sin (\alpha+\beta)=$ \qquad
b. Rewrite the left side of the equation in step a so that we are adding two of the same angles replacing β with α
\qquad $=\sin 2 \alpha$
c. Since we replaced β in the left side, we need to do the same on the right. We get:
\uparrow Be sure to simplify (there are terms you can combine)! \uparrow
d. Put the results together to get our first double-angle formula:

$$
\sin \alpha \cos \alpha+\sin \alpha \cos \alpha
$$

Part 3: Cosine of a double-angle $\rightarrow \quad \operatorname{Cos}(\%+\%)$

a. Recall from the last section, the cosine of the sum of two angles: $\cos (\alpha+\beta)=$ \qquad
b. Rewrite the left side of the equation in step a, replacing β with α : \qquad $=\cos 2 a$
c. Since we replaced β in the left side, we need to do the same on the right. We get:
\uparrow Be sure to simplify (there are terms you can combine)! \uparrow
d. Put the results together to get our first double-angle formula for cosine:

$$
\cos 2 a=\cos ^{2} \alpha-\sin ^{2} \alpha
$$

e. Cosine is a bit different, as it has multiple forms of the double-angle formula. To find a different form, use the trigonometric identity $\sin ^{2} \alpha+\cos ^{2} \alpha=1$.
f. Using the trigonometric identity, above, solve for $\cos ^{2} \alpha=$ \qquad
g. In the double-angle formula that you discovered after part d , replace $\cos ^{2} \alpha$ with the results in part f . We get:
\uparrow Be sure to simplify (there are terms you can combine)! \uparrow
h. Put the results together to get our second double-angle formula for cosine:

$$
\cos 2 a=1-2 \sin ^{2} \alpha
$$

i. There is still one more form of the double-angle identity for cosine. This time, use the trigonometric identity in part e to solve for $\sin ^{2} \alpha=$ \qquad
j. In the double-angle formula that you discovered after part d, replace $\sin ^{2} \alpha$ with the results in part i . We get:
\qquad
\uparrow Be sure to simplify (there are terms you can combine)! \uparrow
k. Put the results together to get our third double-angle formula for cosine:

$$
\cos 2 a=2 \cos ^{2} \alpha-1
$$

Part 4: Tangent of a double-angle $\rightarrow \operatorname{Tan}\left(\frac{M Y}{M}+\frac{M}{M}\right)$

a. Recall from the last section, the tangent of the sum of two angles: $\tan (\alpha+\beta)=$ \qquad
b. Rewrite the left side of the equation in step a, replacing β with α : \qquad $=\tan 2 a$
c. Since we replaced β in the left side, we need to do the same on the right. We get:
\uparrow Be sure to simplify (there are terms you can combine)! \uparrow
d. Put the results together to get our first double-angle formula:

$$
\tan 2 \alpha=\frac{2 \tan \alpha}{1-\tan 2 \alpha}
$$

Part 5: Summary

Complete the Table \downarrow

$\sin 2 \alpha=$	$\cos 2 a=$	$\tan 2 \alpha=$
	(Be sure to list all 3)	

Discovering the Power-Reducing Formulas

Yesterday, we discovered that double-angle formulas. These double angle formulas can be used to obtain the power reducing formulas! These formulas allow us to reduce the power of trig functions with even degrees.

Part 1: Power-Reducing Formula for $\cos ^{2} \theta$
Step 1: Rewriting the important equations that we will use
a. $\cos (2 \theta)=$
b. $\cos ^{2} \theta+\sin ^{2} \theta=$

Step 2: Add these two equations together

$$
\begin{aligned}
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
1 & =\cos ^{2} \theta+\sin ^{2} \theta
\end{aligned}
$$

Step 3: Solve for $\cos ^{2} \theta$, and we obtain the power-reducing formula for $\cos ^{2} \theta$
\square

Part 2: Power-Reducing Formula for $\sin ^{2} \theta$
Step 1: Same as part 1
Step 2: Subtract these two equations together

$$
1=\cos ^{2} \theta+\sin ^{2} \theta
$$

- $\left(\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta\right)$

Step 3: Solve for $\sin ^{2} \theta$, and we obtain the power-reducing formula for $\sin ^{2} \theta$
\square

Discovering the Half-Angle Formulas

Some alternative forms of the power-reducing formulas come from replacing θ with $\frac{\theta}{2}$, creating the half-angle formulas.

Part 1: Half-Angle Formula for $\cos \frac{\theta}{2}$
Step 1: Rewrite the formula for $\cos ^{2} \theta$, below

Step 2: Replace each θ with $\frac{\theta}{2}$

Step 3: Solve for $\cos \frac{\theta}{2}$

Part 2: Repeat steps $1-3$ to discover the formulas for $\sin \frac{\theta}{2}$ and $\tan \frac{\theta}{2}$

Conclusion:

$$
\tan \frac{\theta}{2}=\frac{1-\cos \theta}{\sin \theta}=\frac{\sin \theta}{1+\cos \theta}
$$

Example 1: Use half-angle formulas to find the exact value of $\sin 105^{\circ}$

$$
\begin{aligned}
& \sin \frac{\theta}{2}= \pm \sqrt{\frac{1-\cos \theta}{2}} \\
& \sin \frac{210}{2}=\sqrt{\frac{1-\cos 210}{2}} \\
& \sqrt{\frac{1--\frac{\sqrt{3}}{2}}{2}}=\sqrt{\frac{\frac{2+\sqrt{3}}{2}}{\frac{2}{1}}} \\
& \sqrt{\frac{2+\sqrt{3}}{2} \cdot \frac{1}{2}}=\sqrt{\frac{2+\sqrt{3}}{4}}=\sqrt{\frac{2+\sqrt{3}}{2}}
\end{aligned}
$$

Example 3: Find the exact value of $\cos 2 u$ using a double-angle identity given $\cos u=\frac{4}{5}$ and $\frac{3 \pi}{2}<u<2 \pi$

$$
\frac{32}{25}-\frac{25}{25}=\frac{7}{25}
$$

Example 2: Find all solutions of $1+\cos ^{2} x=2 \cos ^{2} \frac{x}{2}$ in the interval $[0,2 \pi)$

$$
\begin{gathered}
2\left(\cos \frac{x}{2}\right)^{2}= \\
z\left(\pm \sqrt{\frac{1+\cos x}{2}}\right)^{2} \\
z\left(\frac{1+\cos x}{z}\right)=1+\cos x
\end{gathered}
$$

$1+\cos ^{2} x=1+\cos x$
$\cos ^{2} x-\cos x=0$
$\cos x(\cos x-1)$

$$
\cos x=0 \quad \cos x-1=0
$$

$$
\frac{\pi}{2}, \frac{3 \pi}{2} \quad \cos x=1
$$

Example 4: Find all solutions of $\sin 2 x+\cos x=0$ in the interval $[0,2 \pi)$

$$
\begin{aligned}
& 2 \sin x \cos x+\cos x=0 \\
& \cos x(2 \sin x+1)=0 \\
& \cos x=0 \quad \frac{2 \sin x+1=0}{\cos x=0 \rightarrow \frac{1 \pi / 2}{3 \pi / 2}} \begin{array}{l}
\sin x=-\frac{1}{2} \rightarrow \frac{11 \pi}{6}, \frac{7 \pi}{6}
\end{array}
\end{aligned}
$$

Example 5: Find all solutions of $\sin 2 x \sin x=\cos x$ in the interval $[0,2 \pi)$

$$
\begin{aligned}
& 2 \sin x \cos x \sin x=\cos x \\
& 2 \sin x \cos x \sin x-\cos x=0 \\
& 2 \sin ^{2} x \cos x-\cos x=0 \\
& \cos x\left(2 \sin ^{2} x-1\right)=0 \\
& \cos x=0 \quad \begin{array}{l}
2 \sin ^{2} x-1=0 \\
\sin 2 x=\frac{1}{2} \\
\sin x=\frac{ \pm \sqrt{2}}{2}
\end{array}
\end{aligned}
$$

