5.1 Using Fundamental Identities

As you complete the table below, rate each of the groups of identities with a 3,2 , or 1 .
3- I'm very familiar with this.
2- I'm somewhat familiar with this.
1- I've never seen this before...ever.

Using Identities to Evaluate a Function

1. Use the values $\sec u=-\frac{3}{2}$ and tan >0 to find the values of all six trigonometric functions.
2. Use the values of $\sec \theta=\sqrt{2}$ and $\sin \theta=-\frac{\sqrt{2}}{2}$ to find the values of all six trigonometric functions.

$$
\begin{aligned}
& \cos \theta=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \\
& \csc \theta=\frac{-2}{\sqrt{2}}=\frac{-2 \sqrt{2}}{2}=-\sqrt{2}
\end{aligned}
$$

Simplifying Trigonometric Identities

1. Simplify $\sin x \cos ^{2} x-\sin x$

$$
\begin{aligned}
& \sin x\left(\cos ^{2} x-1\right) \\
& \sin x\left(-\sin ^{2} x\right)=-\sin ^{3} x
\end{aligned}
$$

2. Simplify $\sin x+\cot x \cos x$

$$
\begin{aligned}
& \sin x+\frac{\cos x}{\sin x} \cdot \cos x \\
& \sin x+\frac{\cos 2 x}{\sin x}=\frac{\sin ^{2} x}{\sin x}+\frac{\cos ^{2} x}{\sin x}=\frac{1}{\sin x}=\csc x
\end{aligned}
$$

3. Simplify cosxtanx

$$
\frac{\sin ^{2} x+\left(1-\sin ^{2} x\right)}{\sin x}
$$

Factoring a Trigonometric Expression

1. Factor $\csc ^{2} x-\cot x-3$

$$
1+\cot ^{2} x-\cot x-3
$$

$$
\frac{\cot ^{2} x-\cot x-2}{(\cot x-2)(\cot x+1)(x-2)(x+1)}
$$

2. Factor $\sec ^{4} x-\tan ^{4} x$

$$
\begin{aligned}
& \frac{1}{\cos ^{4} x}-\frac{\sin ^{4} x}{\cos ^{4} x}=\frac{1-\sin ^{4} x}{\cos 4}=\frac{\cos ^{4} x}{\cos ^{4} x}=1 \\
& 1+\tan ^{4} x-\frac{\tan ^{4} x}{2}=1
\end{aligned}
$$

3. Factor $\cot ^{2} x-\cot ^{2} x \cos ^{2} x$

$$
\begin{aligned}
& \cot ^{2} x\left(1-\cos ^{2} x\right) \\
& \cot ^{2} x\left(\sin ^{2} x\right) \\
& \frac{\cos ^{2} x}{\sin ^{2} x} \cdot \sin ^{2} x=\cos ^{2} x
\end{aligned}
$$

Rewriting a Trigonometric Expression

1. Rewrite $\frac{1}{1+\sin x}$ so that it is not in fractional form.

$$
\begin{aligned}
& \frac{1}{1+\sin x} \cdot \frac{1-\sin x}{1-\sin x}=\frac{1-\sin x}{1-\sin ^{2} x}=\frac{1-\sin y}{\cos ^{2} x} \\
& \frac{1}{\cos ^{2} x}-\frac{\sin x}{\cos ^{2} x}=\sec ^{2} x-\frac{\sin x}{\cos ^{2} x}=\underbrace{\operatorname{sen}^{2}}_{\left.\frac{\sec ^{2} x-\tan x(\sec x)}{\sec ^{2} x} \cdot \frac{1}{\operatorname{ses} x} \cos x+\sec x\right)}
\end{aligned}
$$

2. Rewrite $\frac{\sin ^{2} y}{1-c o s y}$ so that it is not in fractional form.
3. Rewrite $\frac{\operatorname{sinx}}{\operatorname{tanx}}$ so that it is not in fractional form.

$$
\begin{aligned}
& \tan \theta=-1 \\
& \cot \theta=-1
\end{aligned}
$$

